标签归档:opencv

opencv + tensorflow + C++ 对RSNet模型进行预测

本文介绍了一种使用opencv + c++ 可以在生产环境下调用tensorflow pb文件进行预测的方法。
该方法不需要在生产环境下搭建python运行环境。 流程上相对简单清晰。如果要将神经网络/机器学习添加到几年前项目中,也比较简单可行。

一.pb文件的生成

本人使用的RsNet模型完全参考github上官方给出的demo训练生成。网址https://github.com/tensorflow/models
训练入口文件official/resnet/imagenet_main.py (主线版本 v1.8.1)
只定义了2个分类,具体的训练方法就不再累

训练完成后会在根目录生成一个imagenet_model文件夹,里面存储了模型文件(ckpt文件)。接下来需要将模型文件固化成pb文件。为了让opencv可以使用这个pb文件,需要定义好神经网络input入口与output出口

继续阅读

windows下编译tensorflow c++ library及与opencv的使用

tensorflow在1.3后加入了官方的windows支持,可以使用cmake在vs2015下编译c++ library。但坑还是很多,简单整理了1.3版本编译及使用过程。并介绍了编译部分kernel的方法。其他版本也可参考进行编译。

编译版本为1.3,只cpu。带gpu的tensorflow可以用1.5以后的版本。

编译前准备

组件下载或安装

1.CMake version 3.5以上

2.git (http://git-scm.com)

3.swig (http://www.swig.org/download.html)

4.Visual Studio 2015

5.Python 3.5 64-bit (选择添加安装lib文件)

6.NumPy 1.11.0 以上

注意事项:CMake 与 git安装时需要将其加入到环境变量中,否则后续编译过程中会出现找不到相关程序的错误

编译过程

1.设置vs使用64位的编译工具(否者有一定概率报out-of-memory的错误)

继续阅读